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Question 1(20 marks) 

1.1 Obtain the solution of the given PDE by direct integration method if 

  Cu 4x (1-2) when 
Ox” 

7 Ou . 
x=0, uw=e", and —=4? are functions oft. [9] 

x 
1.2 | Show that w= f(x) g(y) where fand g are arbitrary twice differentiable 

functions satisfies ww,, —u,u, =0 [11] 

Question 2 (17 marks) 

Use the separable variables method to solve the inhomogeneous problem 

yu, + xu, = (xyw)° using the initial condition that 

u(x,0) = sexp( 7° (171 

Question 3 (13 marks) 

Consider a stretched string of length / fixed at both end points. 

Determine from basic principles the equation of motion which characterizes 

the position w (x.r) of the string at time t after an initial disturbance. 

Assume there is only a pure transverse vibration of the string. [13] 

Question 4 (20 marks) 

Obtain the steady state temperature distribution in a cube as described by the 

Laplace’s equation 

V*u =U, +U,, +U,, =0 for the intervals 

O<x<a, 0<y<a and 0<z<az 

when the faces are kept at zero degree temperature except the face z=0 

and 

u(0,y,z)=u(z, y,z)=0 

u(x, 0, z) = u(x,7, z) =0 

u(x, y,7) =0, u(x, y,0) = f(x,y) 

as the initial boundary conditions. [20] 

END OF EXAMINATION


